
Introduction
IGSRegistrationTools provides a no frills graphical user interface to the registration
software under MacOS X. Use the RegistrationRunner application to do registrations
and generate new images from the calculated registrations. Use the Average
application to generate average brains (useful if your images are a bit noisy; may
also protect somewhat against using an unusual brain as a template).

Installation
1. To install download the IGSRegistrationTools.zip file and expand by double
clicking. I recommend copying the resulting IGSRegistrationTools directory to your
Applications directory. All the required programs and scripts are bundled inside the
applications (you can right click and choose "Show package contents" to see what's
inside).
2. To prepare input images and inspect output images, install the Fiji distribution of
ImageJ from http://fiji.sc/.

Preparing for Registration
To use the GUI registration (and substantially simplify your life), your input files need
to obey certain conventions.

1. They should be all be saved in nrrd format using the Nrrd_Writer ImageJ
plugin that I have written. Make sure that the spatial calibration information is
correct in all 3 axes when you save. You can save a lot of space in sparse
images by making the Nrrd_Writer plugin save the data in compressed format.
To do this press the Alt key before and while selecting the "File … Save As …
Nrrd …" menu option.

2. Separate files are used for each image channel (red, green, blue ...). The
filenames must follow the Biorad convention by ending in 01.nrrd, 02.nrrd,
03.nrrd. Use simple alphanumeric names only - avoid underscores.

3. Make a folder to contain your registration work
4. Make a subsidiary folder names images (all lower case) and put your nrrd

files inside. Organise them in subfolders if you want; this folder hierarchy will
be regenerated in the output directories.

e.g. here I have made a directory called warpbench in which I will do some
registration work.

http://fiji.sc

Running Registrations
The registration process involves

1. Choosing a set of input images (sample brains)
2. Choosing a reference brain
3. Selecting what you want to do with these brains (see Registration Options

below)
4. Running the registration
5. OR inspecting the command line for later use in the Terminal application, in

your own scripts etc.

Registration Options
This GUI is still pretty basic, so at one point you will need to provide an option string
to control what the registration will actually do.

 The basic decisions that you have to make are:
1. Whether to do both affine (linear) and warp (nonrigid) registration
2. Whether to reformat the sample images into the reference coordinate system
3. ... and if so which image channel(s) should be reformatted
4. Whether to run a test to see what would happen

There are many additional switches that control the registration that can be added.
For a full list see Full Registration Options below.

Registration Option Examples
A typical set might be

-a -w -r 01
this would run the affine warp and reformat commands on channel 01. Channel 01
will also be reformatted.

If channel 02 contains the images that will be registered, then add -c 02 eg:
-aw -r 01 -c 02

The order of options is largely unimportant; multiple options can be combined (ie -aw
= -a -w)

If you want to reformat channel 02 and 03 images after previously running
registrations on channel 01 then

-r 0203 -f 01

If you want to check to see what registrations have happened:
-u

Output - Registration
The output of the registration/reformatting will go into 2 directories at the same level
as the images folder, Registration and reformatted. Each registration is written out
into a folder with a unique name reflecting the reference and sample brains and
some of the registration parameters and ending in the suffix "list". Here is an
example:

Notice a few things.
1) There is an affine and warp registration folder for each brain. Normally you
would just use the warp registration folder for subsequent work. I have opened up
the folders for the first brain, NCD6RHLH. The critical files in the affine and warp
folders are called registration and registration.gz, respectively. The warp
registration has been gzipped because it is quite large. Notice also that the warp
registration contains several subfolders because it proceeds through several levels
of warping operating initially on a coarsely resampled image and eventually on the
fine resolution image.

Output - Reformat
The default format for reformatted images is nrrd (as for input). For example the

registration:

 average-goodbrains_NCD6RLH01_warp_m0g40c4e1e-1x16r3.list

has resulted in the image:

average-goodbrains_NCD6RLH01_warp_m0g40c4e1e-1x16r3.nrrd

The nrrd files contains spatial calibration information etc in a text header followed by
a data chunk. You can open the file in ImageJ/Fiji.

Running, Interrupting and Rerunning RegistrationRunner
You can cancel a run at any time however the software is not smart enough to clean
up afterwards. In particular, look out for .lock files. These are placeholder files that
are created to indicate that a brain is in progress. If you interrupt a run you will have
to delete all these .lock files before you try and rerun RegistrationRunner.

At the moment you cannot run more than one copy of RegistrationRunner.
However, the underlying applications are multi-threaded. This means that if you
have an 8 or 12 processor Mac (recommended) then the CPU intensive programs
(the main affine and warp registrations) will run across all four CPUs.

Instead of just double clicking on RegistrationRunner, you can also run it by
dragging and dropping a registration directory onto the application icon. However
since this bypasses all the dialog boxes, this is only useful if you have correctly set
the

Customising RegistrationRunner
You can do a basic customisation of RegistrationRunner with minimal knowledge of
perl. Right click on the Application icon and choose "Show Package Contents".
You'll get something like this:

The relevant files are called script and munger.pl. script shows the dialog boxes
and sends the results to munger which coordinates the registration process. If you
want to edit the default registration options (as discussed in Registration Options
section above).

script is a fairly simple perl script and you should be able to edit it at a few locations
to alter the default behaviour of RegistrationRunner. In particular modify the line:

$MAINARGS="-awr 01 -v ";

to specify your preferred default set of registration options. e.g.

$MAINARGS="-awr 02 "; # trailing space is significant

munger is pretty complicated, but there are a few defaults early on in the script that
you could alter without too much effort. In particular feel free to edit the line:

my $referenceImage=$ENV{"HOME"}."/projects/ReferenceImages/average-
goodbrains-warp40-5_e1e-2.study";

so that it is set to your most commonly used reference brain. $ENV{"HOME"} is
replaced by the location of the currently active user's home directory e.g. "/Users/
joe".

Full Registration Options
You can also see all these command line options by dropping an empty folder on the
RegistrationRunner icon.

Usage: /Users/jefferis/bin/munger.pl [OPTIONS] <PICFILE/DIR> [<PICFILE2/
DIR2> ...]
Version: 1.19

A wrapper script for CMTK registration software. For more on CMTK see:
 http://www.nitrc.org/projects/cmtk/

-h print this help
-v verbose (provide extra feed back at runtime)

-t test run (no commands are actually run)
-g debug: prints every command run by myexec and the return value
-p make a scriPt from commands that would be run
 (nb cannot produce commands that depend on earlier commands)
-u statUs - display number of images, registrations etc
-z turn gzip off (on by default)
-k lock message ie contents of lock file (defaults to hostname:process

id)
-m maximum time to keep starting registrations (in hours, default

8760=1y)
 nb this will not stop any running registrations
-x [never|only|any]:[truncate|delete] Clear input images when done.
 default is never, eg only:truncate, any:delete
 only => only the job that runs reformat can clear input
 any => any job can delete; in fact a job started with any will not
 reformat at all. This is useful because you can run a

cleanup
 job if it becomes clear that you are running short of space.

 truncate => leave a 0 length file with same mtime as original image

-a run affine transform
-w run warp transform
-c [01|02|..] channels for registration (default 01 or "")
-r [01|02|..] run reformat on these channels
-l [p|a|0..9|f] run reformat on these levels
 (default f=final warp, p=principal axis, a=affine, 0..9=warp

intermediates)
-f [01|02|..] channel of the images used for registration - default is

01

[nb use -f to specify the channel of the images that were previously
used to

 generate a registration if you now want to reformat a different
channel using

 that registration information]

-i register brain to itself if possible (default is to skip)
-0 Don't output intermediate warp registration levels

-s [file|fileStem] Reference brain (average e-2 by default)
-b [path] bin directory
-d [stem] registration subdirectory (default ./Registration)
 [nb if this begins in a dot then the value will be appended to both
 reformatted and Registration directories]
-F Read path to input files, one per line, from <PICFILE1> ...
 NB path should be absolute or relative to registration directory

e.g.
 images/imagea-01.nrrd
 images/imageb-01.nrrd

-e File ending of input images (pic, nrrd, nhdr)

-o File ending of output images (bin, nrrd, nhdr) - defaults to nrrd

-H use Amira's Generalised Hough Transform to initialise affine
registration when available

 (nb the registration folder should be called Registration/affine/
XXX_ght.list)

-P find initial affine transform using image principal axes
-L find initial affine transform using landmarks
-I inverse consistent warp weight (--ic-weight) default 0, try 1e-5
-E [energy] energy of warp transform (default e-1)
-X [exploration] (default 16)
-M [metric] (Supported values: nmi, mi, cr, msd, ncc, default is nmi)

 See warp --help for details
-C [coarsest] (default 4)
-G [grid-spacing] (default 40)
-R [refine] (default 3)
-J [0 to 1] jacobian-weight volume constraining param (default 0)
-T [threads] (default auto)

-A [option] additional options for affine transformation
-W [option] additional options for warp transformation

Acknowledgements
These simple applications were built using the Platypus script wrapper tool and
CocoaDialog. Many thanks to the authors of those programs.

Author
(c) January 2012
Gregory Jefferis, Division of Neurobiology, MRC Laboratory of Molecular Biology,
Cambridge, UK.
www.jefferislab.org

